Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta revista está autorizada por una licencia de atribución Creative Commons (CC BY-NC-SA 4.0) Attribution-Non Commercial 4.0 International. Para las licencias CC, el principio es el de la libertad creativa. Este sistema complementa el derecho de autor sin oponerse a este, conscientes de su importancia en nuestra cultura. El contenido de los artículos es responsabilidad de cada autor y no compromete, de ninguna manera, a la revista o a la institución. Se permite la divulgación y reproducción de títulos, resúmenes y contenido total, con fines académicos, científicos, culturales, siempre y cuando, se cite la respectiva fuente. Esta obra no puede ser utilizada con fines comerciales.
La revista no cobra a los autores por la presentación o la publicación de sus artículos
Resumen
Este artículo estudia la evolución y los determinantes de la calidad de la educación en Colombia durante los años 2017 (antes) y 2021 (durante la pandemia), con el propósito de evaluar el impacto del covid-19 sobre el rendimiento académico de los estudiantes. Para ello, se empleó el método de descomposición propuesto por Firpo et al. (2007, 2011) que permite analizar los factores que determinan el diferencial en el rendimiento académico a través del cálculo de descomposiciones contrafactuales para toda la distribución del rendimiento académico; en particular se analizaron los cuantiles 10, 30, 50, 70 y 90. Se encontró que la pandemia afectó el rendimiento académico de todos los estudiantes en general, pero en especial, a los estudiantes de la parte baja de la distribución. Con ello se comprueba la hipótesis de que el desmejoramiento en las características socioeconómicas, familiares y personales de los estudiantes empeoró las desigualdades educativas existentes.
Palabras clave:
Citas
Abadía, L., Gómez. C., & Cifuentes, J. (2021). Gone with the pandemic: effects of COVID-19 on academic performance in Colombia. Vniversitas Económica, 21(4), 019339. https://drive.google.com/file/d/1LAwxYvLNVJftYzio7bbFNrDcrAOe8iWJ/view
Akseer, N., Kandru, G., Keats, E. C, & Bhutta, Z. A. (2020). Covid-19 pandemic and mitigation strategies: Implications for maternal and child health and nutrition. The American Journal of Clinical Nutrition, 112(2), 251-256. https://doi.org/10.1093/ajcn/nqaa171
Alejo, J., Favata, F., Montes, G. & Trombetta, M. (2021). Conditional vs unconditional regression models: A guide to practitioners. Journal ECONOMÍA, 44(88), 76-93. https://doi.org/10.18800/economia.202102.004
Andrew, A., Cattan, S., Costa, M., Farquharson, C., Kraftman, L., Krutikova, S., & Sevilla, A. (2020). Inequalities in children's experiences of home learning during the COVID‐19 lockdown in England. Fiscal Studies, 41(3), 653-683. https://doi.org/10.1111/1475-5890.12240
Belmonte, M. L., Álvarez, J. S., & Hernández, M. Á. (2022). Rendimiento académico percibido en función de la ocupación laboral de los padres. Revista Complutense de Educación, 33(2), 279-287. https://doi.org/10.5209/rced.74104
Blinder, A. (1973). Wage discrimination: Reduced form and structural estimates. The Journal of Human Resources, 8(4), 436-55. https://doi.org/10.2307/144855
Contreras, D., & Gallardo, S. (2022). The effects of mass migration on the academic performance of native students. Evidence from Chile. Economics of Education Review, 91, 102314. https://doi.org/10.1016/j.econedurev.2022.102314
Cuenca, A. (2016). Desigualdad de oportunidades en Colombia: impacto del origen social sobre el desempeño académico y los ingresos de graduados universitarios. Estudios Pedagógicos, 42(2), 69-93. http://dx.doi.org/10.4067/S0718-07052016000200005
De Coninck, D., Matthijs, K., & Luyten, P. (2019). Subjective well-being among first-year university students: A two-wave prospective study in Flanders, Belgium. Student Success, 10(1), 33-45. https://doi.org/10.5204/ssj.v10i1.642
Engzell, P., Frey, A., & Verhagen, M. D. (2021). Learning loss due to school closures during the COVID-19 pandemic. Proceedings of the National Academy of Sciences, 118(17), e2022376118. https://doi.org/10.1073/pnas.2022376118
Escarbajal, A., Essomba, M., & Abenza, B. (2019). El rendimiento académico de alumnos de la ESO en un contexto vulnerable y multicultural. Educar, 55(1), 79-99. https://doi.org/10.5565/rev/educar.967
Espejel, M. V., & Jiménez, M. (2019). Educational level and occupation of parents: His influence on the academic performance of University Students. RIDE-Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 10(19), 1-20. https://doi.org/10.23913/ride.v10i19.540
Firpo, S., Fortin, N., & Lemieux, T. (2007). Decomposing Wage Distributions using Influence Function Projections and Reweighting (working paper). University of British Columbia. https://www.economics.uci.edu/files/docs/micro/f07/lemieux.pdf
Firpo, S., Fortin, N., & Lemieux, T. (2009). Unconditional quantile regressions. Econometrica, 77, 953-973. https://doi.org/10.3982/ECTA6822
Firpo, S., Fortin, N., & Lemieux, T. (2011). Decomposition methods in economics. En O. Ashenfelter & D. Card (eds.), Handbook of Labor Economics (vol. 4A, chapter 1, pp. 1-102). North-Holland. https://doi.org/10.1016/S0169-7218(11)00407-2
Flórez, J. J. (2021). ¿Podría el acceso a un computador e internet en casa hacer la diferencia en el desempeño de los estudiantes en las pruebas de Estado-SABER 11°? Una aproximación desde el propensity score matching (Tesis de Maestría, Pontificia Universidad Javeriana). Repositorio Institucional – Pontificia Universidad Javeriana.
García, V., Garrido, A., & Martín, R. (2021). The transformation of higher education after the COVID disruption: Emerging challenges in an online learning scenario. Frontiers in Psychology, 12, 616059. https://doi.org/10.3389/fpsyg.2021.616059
Gortazar, L. (2018). The PISA "shock" in the Basque Country: Contingent factors or structural change? Studies on the Spanish Economy, 17, 1-36.
Hanushek, E. A. (1979). Conceptual and empirical issues in the estimation of educational production functions. Journal of Human Resources, 14(3), 351-388. https://doi.org/10.2307/145575
Herrera, D. Y. (2021). El modelo de la alternancia y la desigualdad educativa territorial en la educación en Colombia. Revista Internacional de Pedagogía e Innovación Educativa, 1(2), 61-86. https://doi.org/10.51660/ripie.v1i2.38
Huang, F. M., Liao, J. C., & Yi, C. C. (2020). The impact of labor market work and educational tracking on student educational outcomes: Evidence from Taiwan. Economics of Education Review, 77, 101955. https://doi.org/10.1016/j.econedurev.2020.101955
Hurwitz, L. B., & Schmitt, K. L. (2020). Can children benefit from early internet exposure? Short-and long-term links between internet use, digital skill, and academic performance. Computers & Education, 146, 103750. https://doi.org/10.1016/j.compedu.2019.103750
Kaplan, G., Moll, B., & Violante, G. L. (2020). The great lockdown and the big stimulus: Tracing the pandemic possibility frontier for the US (working paper). National Bureau of Economic Research, w27794. https://doi.org/10.3386/w27794
Kim, S. (2018). How and why fathers are involved in their children’s education: Gendered model of parent involvement. Educational Review, 70(3), 280-299. https://doi.org/10.1080/00131911.2017.1311304
Lichand, G., Dória, C. A., Neto, O. L., & Cossi, J. (2021). The impacts of remote learning in secondary education: Evidence from Brazil during the pandemic. Research Square, 03062021. https://doi.org/10.21203/rs.3.rs-568605/v1
Llanes, L. M., Pico, M. R., Maldonado, D., & García, S. (2022). Desigualdad en el aprendizaje durante el COVID-19: evidencia para estudiantes de secundaria en Colombia (working paper). Escuela de Gobierno Alberto Lleras Camargo, Universidad de los Andes, 020157.
Maldonado, J. E. & De Witte, K. (2022). The effect of school closures on standardised student test outcomes. Revista de Investigación Educativa Británica, 48(1), 49-94. https://doi.org/10.1002/berj.3754
Oaxaca, R. (1973). Male-female wage differentials in urban labor markets. International Economic Review, 14(3), 693-709. https://doi.org/10.2307/2525981
Padilla, M. (2022). Full-time schools, policy-induced school switching, and academic performance. Journal of Economic Behavior & Organization, 196, 79-103. https://doi.org/10.1016/j.jebo.2022.01.025
Prieto, C., Lopez, L., Luque, M., & Marcenaro, O. (2022). The ideal use of the internet and academic success: Finding a balance between competences and knowledge using interval multiobjective programming. Socio-Economic Planning Sciences, 81, 101208. https://doi.org/10.1016/j.seps.2021.101208
Santillán, A. S., & Vargas, J. R. (2022). Descomposición de la desigualdad del rendimiento escolar por condición de pobreza en estudiantes mexicanos. Análisis Económico, 37(95), 125-141. https://doi.org/10.24275/uam/azc/dcsh/ae/2022v37n95/santillan
Sui, J. R. (2022). El impacto de la conectividad de internet móvil sobre los resultados de la prueba Saber 11 en tiempos de pandemia. Universidad de los Andes (Tesis de Maestría, Universidad de los Andes). Séneca - Repositorio Institucional. http://hdl.handle.net/1992/59229
Tomasik, M. J., Helbling, L. A., & Moser, U. (2021). Educational gains of in‐person vs. distance learning in primary and secondary schools: A natural experiment during the COVID‐19 pandemic school closures in Switzerland. International Journal of Psychology, 56(4), 566-576. https://doi.org/10.1002/ijop.12728