Cómo citar
Aijaz Syed, A., & Singh, A. (2025). ¿Las criptomonedas sostenibles son inmunes a la incertidumbre política? Revelando las implicaciones asimétricas de la incertidumbre climática y de la política económica global para las criptomonedas verdes. Revista Finanzas Y Política Económica, 17, 1–35. https://doi.org/10.14718/revfinanzpolitecon.v17.2025.16
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Esta revista está autorizada por una licencia de atribución Creative Commons (CC BY-NC-SA 4.0) Attribution-Non Commercial 4.0 International. Para las licencias CC, el principio es el de la libertad creativa. Este sistema complementa el derecho de autor sin oponerse a este, conscientes de su importancia en nuestra cultura. El contenido de los artículos es responsabilidad de cada autor y no compromete, de ninguna manera, a la revista o a la institución. Se permite la divulgación y reproducción de títulos, resúmenes y contenido total, con fines académicos, científicos, culturales, siempre y cuando, se cite la respectiva fuente. Esta obra no puede ser utilizada con fines comerciales.

Licencia de Creative Commons

La revista no cobra a los autores por la presentación o la publicación de sus artículos

Resumen

Los avances en tecnologías blockchain y las crecientes incertidumbres ambientales y económicas nos llevaron a investigar el impacto de la incertidumbre de la política climática (IPC) y la incertidumbre de la política económica global (IPEG) en cinco criptomonedas verdes —ADA, EOS, IOTA, XLM, XTZ— seleccionadas en función de la eficiencia energética y los procesos de minería. Se examinó el impacto a corto y largo plazo de activos alternativos en estas criptomonedas mediante un modelo autorregresivo con rezagos distribuidos no lineal. A largo plazo, estas criptomonedas se ven afectadas negativamente por la IPC y la IPEG, lo que cuestiona su potencial de refugio seguro. A corto plazo, ADA, EOS y XLM comparten una relación asimétrica positiva con la IPC, mientras que todas las  criptomonedas tienen una relación asimétrica negativa  con la IPEG. Por lo tanto, a corto plazo, ADA, EOS y XLM pueden considerarse un refugio seguro. Tanto a corto como a largo plazo, los bonos verdes ejercen un impacto positivo, mientras que las tasas de interés, el S&P 500 y el índice del oro tienen un impacto negativo en estas criptomonedas. A corto plazo, el bitcoin comparte una relación negativa con EOS, IOTA y XTZ y una relación positiva con ADA y XLM. A largo plazo, exhibe una correlación positiva con todas las criptomonedas verdes.  El USD comparte una relación positiva a corto plazo y una relación negativa a largo plazo con todas las  criptomonedas verdes. Los hallazgos tienen implicaciones prácticas para la construcción de carteras y las transacciones de los inversores en el mercado de criptomonedas verdes.

Citas

Ali, F., Khurram, M. U., Sensoy, A., & Vo, X. V. (2024). Green cryptocurrencies and portfolio diversification in the era of greener paths. Renewable and Sustainable Energy Reviews, 191, 114137. https://doi.org/10.1016/j.rser.2023.114137

Ali, O., Jamal, S., Zeb, A., & Riaz, A. (2025). Uncertainty in the Digital Age: Investigating the Impact of Economic Policy Uncertainty on Cryptocurrency Volatility. ACADEMIA International Journal for Social Sciences, 4(1), 425–433. https://doi.org/10.63056/ACAD.004.01.0093

Baker, S. R., Bloom, N., & Davis, S. J. (2025, April 12). Global Economic Policy Uncertainty Index: Current Price Adjusted GDP [GEPUCURRENT]. FRED, Federal Reserve Bank of St. Louis. https://fred.stlouisfed.org/series/GEPUCURRENT

Banerjee, A., Dolado, J., & Mestre, R. (1998). Error-correction mechanism tests for cointegration in a single-equation framework. Journal of Time Series Analysis, 19(3), 267–s283. https://doi.org/10.1111/1467-9892.00091

Ben Yaala, S., & Henchiri, J. E. (2025). Climate risks and cryptocurrency volatility: evidence from crypto market crisis. China Finance Review International. https://doi.org/10.1108/CFRI-09-2024-0575

Bouri, E., Iqbal, N., & Klein, T. (2022). Climate policy uncertainty and the price dynamics of green and brown energy stocks. Finance Research Letters, 47, 102740. https://doi.org/10.1016/j.frl.2022.102740

Broock, W. A., Scheinkman, J. A., Dechert, W. D., & LeBaron, B. (1996). A test for independence based on the correlation dimension. Econometric Review, 15(3), 197–235. https://doi.org/10.1080/07474939608800353

Chen, Y., Jiang, Q., Dai, Z., & Liu, Y. (2025). The impact of climate policy uncertainty on the correlations between green bond and green stock markets. International Review of Financial Analysis, 102, 104046. https://doi.org/10.1016/j.irfa.2025.104046

Chowdhury, M. S. R., Damianov, D. S., & Elsayed, A. H. (2022). Bubbles and crashes in cryptocurrencies: Interdependence, contagion, or asset rotation? Finance Research Letters, 46, 102494. https://doi.org/10.1016/j.frl.2021.102494

Chua, K. H., Ng, J. K. Y., Lee, K. Z., & Saw, M. Q. (2022). Can cryptocurrencies act as a hedge to stock market volatility? Evidence from geopolitical risk and economic policy uncertainty [Doctoral dissertation, UTAR].

Colon, F., Kim, C., Kim, H., & Kim, W. (2021). The effect of political and economic uncertainty on the cryptocurrency market. Finance Research Letters, 39, 101621. https://doi.org/10.1016/j.frl.2020.101621

Corelli, A. (2018). Cryptocurrencies and exchange rates: A relationship and causality analysis. Risks, 6(4), 111. https://doi.org/10.3390/risks6040111

Doğan, B., Trabelsi, N., Tiwari, A. K., & Ghosh, S. (2023). Dynamic dependence and causality between crude oil, green bonds, commodities, geopolitical risks, and policy uncertainty. The Quarterly Review of Economics and Finance, 89, 36–62. https://doi.org/10.1016/j.qref.2023.02.006

Dong, X., Wang, K. H., Tao, R., Sorana, V., & Moldovan, N. C. (2024). Is there a relationship between climate policy uncertainty and green finance? Evidence from bootstrap rolling window test. Economic Analysis and Policy, 82, 277–289. https://doi.org/10.1016/j.eap.2024.03.013

Elsayed, A. H., Naifar, N., Nasreen, S., & Tiwari, A. K. (2022). Dependence structure and dynamic connectedness between green bonds and financial markets: Fresh insights from time-frequency analysis before and during COVID-19 pandemic. Energy Economics, 107, 105842. https://doi.org/10.1016/j.eneco.2022.105842

Forbes, K. J., & Rigobon, R. (2002). No contagion, only interdependence: measuring stock market comovements. The Journal of Finance, 57(5), 2223–2261. https://doi.org/10.1111/0022-1082.00494

Gaies, B., Nakhli, M. S., & Arfaoui, N. (2025). Crypto resource management: solving the puzzle of bitcoin mining and climate policy uncertainty. The Journal of Risk Finance, 26(2), 272–294. https://doi.org/10.1108/JRF-03-2024-0073

Gallersdörfer, U., Klaaßen, L., & Stoll, C. (2020). Energy consumption of cryptocurrencies beyond bitcoin. Joule, 4(9), 1843–1846. https://doi.org/10.1016/j.joule.2020.07.013

Gavriilidis, K. (2021). Measuring climate policy uncertainty. SSRN. https://doi.org/10.2139/ssrn.3847388

Gürsoy, S., Jóźwik, B., Dogan, M., Zeren, F., & Gulcan, N. (2024). Impact of climate policy uncertainty, clean energy index, and carbon emission allowance prices on Bitcoin returns. Sustainability, 16(9), 3822. https://doi.org/10.3390/su16093822

Gyamerah, S. A., & Asare, C. (2024). The impacts of global economic policy uncertainty on green bond returns: A systematic literature review. Heliyon, 10(3). https://doi.org/10.1016/j.heliyon.2024.e25076

Haq, I. U., Ferreira, P., Quintino, D. D., Huynh, N., & Samantreeporn, S. (2023). Economic policy uncertainty, energy and sustainable cryptocurrencies: investigating dynamic connectedness during the COVID-19 pandemic. Economies, 11(3), 76. https://doi.org/10.3390/economies11030076

He, C., Li, Y., Wang, T., & Shah, S. A. (2024). Is cryptocurrency a hedging tool during economic policy uncertainty? An empirical investigation. Humanities and Social Sciences Communications, 11(1), 1–10. https://doi.org/10.1057/s41599-023-02532-x

Hoque, M. E., & Zaidi, M. A. S. (2019). The impacts of global economic policy uncertainty on stock market returns in regime switching environment: Evidence from sectoral perspectives. International Journal of Finance & Economics, 24(2), 991–1016. https://doi.org/10.1002/ijfe.1702

Husain, A., Yii, K. J., & Lee, C. C. (2023). Are green cryptocurrencies really green? New evidence from wavelet analysis. Journal of Cleaner Production, 417, 137985. https://doi.org/10.1016/j.jclepro.2023.137985

Jin, D., & Yu, J. (2023). Predicting cryptocurrency market volatility: Novel evidence from climate policy uncertainty. Finance Research Letters, 58, 104520. https://doi.org/10.1016/j.frl.2023.104520

Kayani, U., Ullah, M., Aysan, A. F., Nazir, S., & Frempong, J. (2024). Quantile connectedness among digital assets, traditional assets, and renewable energy prices during extreme economic crisis. Technological Forecasting and Social Change, 208, 123635. https://doi.org/10.1016/j.techfore.2024.123635

Maghyereh, A., & Abdoh, H. (2021). Time–frequency quantile dependence between Bitcoin and global equity markets. The North American Journal of Economics and Finance, 56, 101355. https://doi.org/10.1016/j.najef.2020.101355

Mnif, E., Zghidi, N., & Jarboui, A. (2025). Evaluating the effectiveness of green bonds and clean cryptocurrencies as hedging tools in volatile financial environments. Management of Environmental Quality: An International Journal, 36(3), 681–705. https://doi.org/10.1108/MEQ-07-2024-0300

Naeem, M. A., & Karim, S. (2021). Tail dependence between bitcoin and green financial assets. Economics Letters, 208, 110068. https://doi.org/10.1016/j.econlet.2021.110068

Narayan, P. K. (2005). The saving and investment nexus for China: evidence from cointegration tests. Applied Economics, 37(17), 1979–1990. https://doi.org/10.1080/00036840500278103

Nguyen, K. Q. (2022). The correlation between the stock market and Bitcoin during COVID-19 and other uncertainty periods. Finance Research Letters, 46, 102284. https://doi.org/10.1016/j.frl.2021.102284

Okorie, D. I., & Lin, B. (2020). Crude oil price and cryptocurrencies: Evidence of volatility connectedness and hedging strategy. Energy Economics, 87, 104703. https://doi.org/10.1016/j.eneco.2020.104703

Patel, R., Gubareva, M., & Chishti, M. Z. (2024). Assessing the connectedness between cryptocurrency environment attention index and green cryptos, energy cryptos, and green financial assets. Research in International Business and Finance, 70, 102339. https://doi.org/10.1016/j.ribaf.2024.102339

Pesaran, M. H., Shin, Y., & Smith, R. P. (1999). Pooled mean group estimation of dynamic heterogeneous panels. Journal of the American Statistical Association, 94(446), 621–634. https://doi.org/10.1080/01621459.1999.10474156

Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Economics, 16(3), 289–326. https://doi.org/10.1002/jae.616

Pham, L., Karim, S., Naeem, M. A., & Long, C. (2022). A tale of two tails among carbon prices, green and non-green cryptocurrencies. International Review of Financial Analysis, 82, 102139. https://doi.org/10.1016/j.irfa.2022.102139

Pham, S. D., Nguyen, T. T., & Do, H. X. (2024). Impact of climate policy uncertainty on return spillover among green assets and portfolio implications. Energy Economics, 134, 107631. https://doi.org/10.1016/j.eneco.2024.107631

Qian, L., Jiang, Y., Long, H., & Song, R. (2020). The roles of economic policy uncertainty and the COVID-19 pandemic in the correlation between cryptocurrency and stock markets. The Singapore Economic Review, 1–30. https://doi.org/10.1142/S0217590820470062

Qin, M., Shao, X., Hu, C., & Su, C. W. (2025). Can gold hedge against uncertainty in the cryptocurrency and energy markets? Technological Forecasting and Social Change, 214, 124050. https://doi.org/10.1016/j.techfore.2025.124050

Rashid, A., Bakry, W., & Al-Mohamad, S. (2023). Are cryptocurrencies a future safe haven for investors? The case of Bitcoin. Economic Research-Ekonomska Istraživanja, 36(2). https://doi.org/10.1080/1331677X.2022.2140443

Raza, S. A., Masood, A., Benkraiem, R., & Urom, C. (2023). Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach. Energy Economics, 120, 106591. https://doi.org/10.1016/j.eneco.2023.106591

Ren, B., & Lucey, B. (2022). A clean, green haven?—Examining the relationship between clean energy, clean and dirty cryptocurrencies. Energy Economics, 109, 105951. https://doi.org/10.1016/j.eneco.2022.105951

Ren, X., Li, J., He, F., & Lucey, B. (2023). Impact of climate policy uncertainty on traditional energy and green markets: Evidence from time-varying Granger tests. Renewable and Sustainable Energy Reviews, 173, 113058. https://doi.org/10.1016/j.rser.2022.113058

Sarker, P. K., Lau, C. K. M., & Pradhan, A. K. (2023). Asymmetric effects of climate policy uncertainty and energy prices on bitcoin prices. Innovation and Green Development, 2(2), 100048. https://doi.org/10.1016/j.igd.2023.100048

Shin, Y., Yu, B., & Greenwood-Nimmo, M. (2014). Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. In Festschrift in honor of Peter Schmidt: Econometric methods and applications (pp. 281–314). Springer New York. https://doi.

org/10.1007/978-1-4899-8008-3_9

Sun, Q., & Zhang, Z. (2023). Can art hedge against economic policy uncertainty? New insights through the NARDL model. Finance Research Letters, 54, 103706. https://doi.org/10.1016/j.frl.2023.103706

Syed, A. A., Kamal, M. A., Grima, S., & Ullah, A. (2022). The impact of financial development and macroeconomic fundamentals on nonperforming loans among emerging countries: An assessment using the NARDL Approach. Computation, 10(10), 182. https://doi.org/10.3390/computation10100182

Syed, A. A., Loukil, S., Béjaoui, A., & Jeribi, A. (2025). Dual perspectives on market spillovers: G7 indices with S&P 500 versus AI-driven integration. Quality & Quantity, 1–34. https://doi.org/10.1007/s11135-025-02206-7

Ullah, S., Rehman, C. A., & Raman, S. U. (2024). Asymmetric Effect of Innovation on Environmental Quality Based on Environmental Kuznets Curve: A Novel Approach. Bulletin of Business and Economics (BBE), 13(2), 1187–1193. https://doi.org/10.61506/01.00507

Umar, M., Shahzad, F., Ullah, I., & Fanghua, T. (2023). A comparative analysis of cryptocurrency returns and economic policy uncertainty pre-and post-Covid-19. Research in International Business and Finance, 65, 101965. https://doi.org/10.1016/j.ribaf.2023.101965

Wang, J., Mishra, S., Sharif, A., & Chen, H. (2024). Dynamic spillover connectedness among green finance and policy uncertainty: Evidence from QVAR network approach. Energy Economics, 131, 107330. https://doi.org/10.1016/j.eneco.2024.107330

Wang, K. H., Wang, Z. S., Yunis, M., & Kchouri, B. (2023). Spillovers and connectedness among climate policy uncertainty, energy, green bond and carbon markets: A global perspective. Energy Economics, 128, 107170. https://doi.org/10.1016/j.eneco.2023.107170

Yen, K. C., & Cheng, H. P. (2021). Economic policy uncertainty and cryptocurrency volatility. Finance Research Letters, 38, 101428. https://doi.org/10.1016/j.frl.2020.101428

Yilmazkuday, H. (2024). Geopolitical risks and cryptocurrency returns. Review of Financial Economics (forthcoming). https://doi.org/10.2139/ssrn.4825774

Yousaf, I., Riaz, Y., & Goodell, J. W. (2023). Energy cryptocurrencies: Assessing connectedness with other asset classes. Finance Research Letters, 52, 103389. https://doi.org/10.1016/j.frl.2022.103389

Zivot, E., & Andrews, D. W. K. (2002). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, 20(1), 25–44. https://doi.org/10.1198/073500102753410372

Zribi, W., Boufateh, T., & Guesmi, K. (2023). Climate uncertainty effects on bitcoin ecological footprint through cryptocurrency environmental attention. Finance Research Letters, 58, 104584. https://doi.org/10.1016/j.frl.2023.104584

##submission.citations.for##

Sistema OJS 3 - Metabiblioteca |