
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed by a Creative Commons Attribution License (CC BY-NC-SA 4.0) Attribution-Non Commercial 4.0 International. For the CC licenses, the principle isthe creative freedom. This system complements the copyright without opposing it, conscious of its importance in our culture. The content of the articles is the responsibility of each author, and does not compromise in any way, to the journal or the university. It allows the transmission and reproduction of titles, abstracts and full content, with academic, scientific, cultural ends, provided acknowledgment of the respective source. This work cannot be used for commercial purposes.
They journal does not charge authors for submission or publication.
Abstract
This article examines the impact of audiovisual content on Bitcoin’s price and transaction volume, a topic with limited exploration in financial literature. Using correlational and econometric analyses, it investigates audience data from films, series, and documentaries about Bitcoin, alongside public interest metrics from YouTube and Twitch. The results show weak correlations (<0.2) between search levels of most titles and Bitcoin’s financial variables. However, on YouTube, an increase in subscribers to cryptocurrency related channels has positively and significantly affected Bitcoin’s price and transaction volume. These findings highlight the influence of content creators on cryptocurrency adoption and investment, offering a framework for future research on the impact of audiovisual media on financial markets.

References
Aalborg, H., Molnár, P., & De Vries, J. (2019). What can explain the price, volatility and trading volume of Bitcoin? Finance Research Letters, 29, 255–265. https://doi.org/10.1016/j.frl.2018.08.010
Abraham, J., Higdon, D., Nelson, J., & Ibarra, J. (2018). Cryptocurrency Price Prediction Using Tweet Volumes and Sentiment Analysis. SMU Data Science Review, 1(3), 1. https://scholar.smu.edu/datasciencereview/vol1/iss3/1
Akdag, M., & Emsen, H. (2021). Effect of monetary growth in USA on selected assets: S&P500, Gold & Bitcoin estimates with Facebook Prophet. In Administrative and Economic Science Research Theory (pp. 219–234). Livre de Lyon. https://www.researchgate.net/publication/357340269_EFFECT_OF_MONETARY_GROWTH_IN_USA_ON_SELECTED_ASSETS_SP500_GOLD_BITCOIN_ESTIMATES_WITH_FACEBOOK_PROPHET
Ante, L. (2021). How Elon Musk’s Twitter Activity Moves Cryptocurrency Markets. SSRN. https://doi.org/10.2139/ssrn.3778844
Aslanidis, N., Bariviera, A., & López, O. (2022). The link between cryptocurrencies and Google Trends attention. Finance Research Letters, 47(Part A), 102654. https://doi.org/10.1016/j.frl.2021.102654
Bartos, J. (2015). Does Bitcoin follow the hypothesis of efficient market? International Journal of Economics Sciences, 4(2), 10–23. https://doi.org/10.20472/ES.2015.4.2.002
Baur, D., & Dimppfl, T. (2017). Excess Volatility as an Impediment for a Digital Currency. SSRN. https://doi.org/10.2139/ssrn.2949754
Bouoitour, J., & Selmi, R. (2016). Bitcoin: A beginning of a new phase? Economics Bulletin, 36(3), 1430–1440. https://www.researchgate.net/publication/305810738_Bitcoin_A_beginning_of_a_new_phase
Bouri, E., Gupta, R., Tiwari, A., & Roubaud, D. (2017). Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions. Finance Research Letters, 23, 87–95. https://doi.org/10.1016/j.frl.2017.02.009
Brown, J., L’Engle, K., Pardun, C., Guo, G., Kenneavy, K., & Jackson, C. (2006). Sexy Media Matter: Exposure to Sexual Content in Music, Movies, Television, and Magazines Predicts Black and White Adolescents’ Sexual Behavior. Pediatrics, 117(4), 1018–1027. https://doi.org/10.1542/peds.2005-1406
Buhbut, O., Ben Assayag, H., Aharoni-Bar, S., Epstein, M., Tsumi, E., Regev, T., Bunin, A., Honig, A., Kotaro B. O., Ben Arie, G., & Horev, A. (2024). Disability and Patient-Reported Satisfaction in Women with Idiopathic Intracranial Hypertension: A Comparative Study of Venous Sinus Stenting and Medical Management. Diagnostics, 14(22), 2572. https://doi.org/10.3390/diagnostics14222572
Burnie, A., & Yilmaz, E. (2019). Social media and bitcoin metrics: which words matter. Royal Society open science, 6(10), 191068. https://doi.org/10.1098/rsos.191068
Cermak, V. (2017). Can Bitcoin Become a Viable Alternative to Fiat Currencies? An Empirical Analysis of Bitcoin’s Volatility Based on a GARCH Model. SSRN. https://doi.org/10.2139/ssrn.2961405
Charlesworth, A., & Glantz, S. (2005). Smoking in the Movies Increases Adolescent Smoking: A Review. Pediatrics, 116(6), 1516–1528. https://doi.org/10.1542/peds.2005-0141
Chinazzo, C., & Jeleskovic, V. (2024). Forecasting Bitcoin Volatility: A Comparative Analysis of Volatility Approaches. Quantitative Finance. https://doi.org/10.48550/arXiv.2401.02049
Colianni, S., Rosales, S., & Signorotti, M. (2022, August 2). Algorithmic Trading of Cryptocurrency Based on Twitter Sentiment Analysis. Stanford.edu. http://cs229.stanford.edu/proj2015/029_report.pdf
Conlon, T., Corbet, S., & McGee, R. (2023). The Bitcoin Volume-volatility Relationship: a High Frequency Analysis of Futures and Spot Exchanges. SSRN. https://dx.doi.org/10.2139/ssrn.4615028
Dyhrberg, A., Foley, S., & Svec, J. (2018). How investible is Bitcoin? Analyzing the liquidity and transaction costs of Bitcoin markets. Economics Letters, 171, 140–143. https://doi.org/10.1016/j.econlet.2018.07.032
Elliot, S. (2024, March 11). Bitcoin Alcanza Los $72.000 Superando a la Plata Por Primera Vez en la Historia. Decrypt. https://decrypt.co/es/221182/bitcoin-alcanza-los-72-000-superando-a-la-plata-por-primera-vez-en-la-historia
Feng, X., Cao, X., Li, L., Li, Z., Zhang, Q., Sun, W., Houd, B., Liu, C., & Shi, Z. (2024). Study on Performance and Engineering Application of Novel Expansive Superfine Cement Slurry. Materials, 17(22), 5597. https://doi.org/10.3390/ma17225597}
Fosso Wamba, S., Kala Kamdjoug, J., Epie Bawack, R., & Keogh, J. (2019). Bitcoin, Blockchain and Fintech: a systematic review and case studies in the supply chain. Production Planning & Control, 31(2-3), 115–142. https://doi.org/10.1080/09537287.2019.1631460
Gandal, N., Hamrick, J., Moore, T., & Vasek, M. (2021). The rise and fall of cryptocurrency coins and tokens. Decisions in Economics and Finance, 44(2), 981–1014. https://doi.org/10.1007/s10203-021-00329-8
Gao, X., Huang, W., & Wang, H. (2021). Financial Twitter Sentiment on Bitcoin Return and High-Frequency Volatility. Virtual Economics, 4(1), 7–18. https://doi.org/10.34021/ve.2021.04.01(1)
Georgoula, I., Pournarakis, D., Bilanakos, C., Sotiropoulos, D., & Giaglis, G. (2015). Using Time-Series and Sentiment Analysis to Detect the Determinants of Bitcoin Prices. SSRN. https://doi.org/10.2139/ssrn.2607167
Glenski, M., Saldanha, E., & Volkova, S. (2019). Characterizing Speed and Scale of Cryptocurrency Discussion Spread on Reddit. In The World Wide Web Conference (WWW '19) (pp. 560–570). Association for Computing Machinery. https://doi.org/10.1145/3308558.3313702
Guizani, S., & Nafti, I. (2019). The Determinants of Bitcoin Price Volatility: An Investigation With ARDL Model. Procedia Computer Science, 164, 233–238. https://doi.org/10.1016/j.procs.2019.12.177
Hileman, G., & Rauchs, M. (2017). 2017 Global Cryptocurrency Benchmarking Study. SSRN. https://doi.org/10.2139/ssrn.2965436
Hu, J. (2019). Risk of Bitcoin Market: Volatility, Jumps, and Forecasts. SSRN. https://doi.org/10.2139/ssrn.3658078
Huynh, T. (2021). Does Bitcoin React to Trump’s Tweets? Journal of Behavioral and Experimental Finance, 31. https://doi.org/10.1016/j.jbef.2021.100546
Jana, R., Ghosh, I., & Wallin, M. (2022). Taming energy and electronic waste generation in bitcoin mining: Insights from Facebook prophet and deep neural network. Technological Forecasting and Social Change, 178. https://doi.org/10.1016/j.techfore.2022.121584
Jerdack, N., Dauletbek, A., Divine, M., Hult, M., & Carvalho, A. (2019). Understanding What Drives Bitcoin Trading Activities. arXiv: Computers and Society. https://arxiv.org/abs/1901.00720
Johnson, J., Cohen, P., Smailes, E., Kasen, S., & Brook, J. (2002). Television Viewing and Aggressive Behavior During Adolescence and Adulthood. Science, 295(5564), 2468–2471. https://doi.org/10.1126/science.1062929
Junmde, A., & Cho, B. (2020). Can cryptocurrencies overtake the fiat money. International Journal of Business Performance Management, 21(1/2), 6–20. https://doi.org/10.1504/ijbpm.2020.106107
Karalevicius, V., Degrande, N., & De Weerdt, J. (2018). Using sentiment analysis to predict interday Bitcoin price movements. The Journal of Risk Finance, 19(1), 56–75. https://doi.org/10.1108/JRF-06-2017-0092
Kristoufek, L. (2013). BitCoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the Internet era. Scientific Reports, 3, 3415. https://doi.org/10.1038/srep03415
Kristoufek, L. (2015). What Are the Main Drivers of the Bitcoin Price? Evidence from Wavelet Coherence Analysis. PLoS ONE, 10(4), e0123923. https://doi.org/10.1371/journal.pone.0123923
Li, W., & He, M. (2020). Comparative Analysis of Bitcoin, Ethereum, and Libra. In 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS) (pp. 545–550). IEEE. https://doi.org/10.1109/ICSESS49938.2020.9237710
Lin, Z. (2021). Investor attention and cryptocurrency performance. Finance Research Letters, 40. https://doi.org/10.1016/j.frl.2020.101702
McCormick, S., Rimal, R., Harrington, C., Shafer, M., & Shaikh, H. (2019). Communicating climate change through documentary film: imagery, emotion, and efficacy. Climatic Change, 154(1-2), 1–18. https://doi.org/10.1007/s10584-019-02408-7
Milutinovic, M. (2018). Cryptocurrency. Ekonomika, Journal for Economic Theory and Practice and social Issues, 64(1), https://doi.org/10.5937/ekonomika1801105M
Mittal, A., Dhiman, V., Singh, A., & Prakash, C. (2019). Short-Term Bitcoin Price Fluctuation Prediction Using Social Media and Web Search Data. In 2019 Twelfth International Conference on Contemporary Computing (IC3) (pp. 1–6). IEEE. https://doi.org/10.1109/IC3.2019.8844899
Pant, D., Neupane, P., Poudel, A., Pokhrel, A., & Lama, B. (2018). Recurrent Neural Network Based Bitcoin Price Prediction by Twitter Sentiment Analysis. In 2018 IEEE 3rd International Conference on Computing, Communication And Security (ICCCS) (pp. 128–132). IEEE. https://
doi.org/10.1109/cccs.2018.8586824
Partida, P. (2019). Bitcoin Bubbles: Epidemic-Diffusion Analyses and Models [Master’s thesis, Eidgenossische Technische Hochschule Zurich - Swiss Federal Institute of Technology Zurich - Entrepreneurial Risk]. https://ethz.ch/content/dam/ethz/special-interest/mtec/chair-of-entrepreneurial-risks-dam/documents/dissertation/master%20thesis/Master-project_Partida_March2019.pdf
Peterson, T. (2019). Bitcoin Spreads Like a Virus. SSRN, https://doi.org/10.2139/ssrn.3356098
Phillips, R., & Gorse, D. (2017). Predicting cryptocurrency price bubbles using social media data and epidemic modelling. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE. https://doi.org/10.1109/ssci.2017.8280809
Phillips, R., & Gorse, D. (2018). Cryptocurrency price drivers: Wavelet coherence analysis revisited. PLoS ONE, 13(4), e0195200. https://doi.org/10.1371/journal.pone.0195200
Polasik, M., Piotrwska, A., Wisniewski, T., Kotkowski, R., & Lighfoot, G. (2015). Price Fluctuations and the Use of Bitcoin: An Empirical Inquiry. International Journal of Electronic Commerce, 20(1), 9–49. https://doi.org/10.1080/10864415.2016.1061413
Prajapati, P. (2020). Predictive analysis of Bitcoin price considering social sentiments. arXiv.Org. https://arxiv.org/abs/2001.10343
Sattarov, O., Jeon, H., Oh, R., & Lee, J. (2020). Forecasting Bitcoin Price Fluctuation by Twitter Sentiment Analysis. In 2020 International Conference on Information Science and Communications Technologies (ICISCT). IEEE. https://doi.org/10.1109/icisct50599.2020.9351527
Senarathne, C. (2019). Possible impact of Facebook’s Libra on Volatility of Bitcoin: Evidence from Initial Coin Offer Funding Data. Management of Organizations; Systematic Research, 81(1), 87–100. https://doi.org/10.1515/mosr-2019-0006
Shanaev, S., Sharma, S., Ghimire, B., & Shuraeva, A. (2020). Taming the blockchain beast? Regulatory implications for the cryptocurrency Market. Research in International Business and Finance, 51, 101080. https://doi.org/10.1016/j.ribaf.2019.101080
Shen, D., Urquhart, A., & Wang, P. (2019). Does Twitter predict Bitcoin? Economics Letters, 174, 118–122. https://doi.org/10.1016/j.econlet.2018.11.007
Smith, S., & Castonguay, J. (2020). Blockchain and Accounting Governance: Emerging Issues and Considerations for Accounting and Assurance Professionals. Journal of Emerging Technologies in Accounting, 17(1), 119–131. https://doi.org/10.2308/jeta-52686
Urquhart, A. (2018). What causes the attention of Bitcoin? Economics Letters, 166, 40–44. https://doi.org/10.1016/j.econlet.2018.02.017
Vinkóczi, T., Idziak, E., Tamás, B., & Kurucz, A. (2024). Tech titans: Generation Zs role in the FinTech evolution. Journal of Infrastructure, Policy and Development, 8(10), 8201. https://doi.org/10.24294/jipd.v8i10.8201
Wooley, S., Edmonds, A., Bagavathi, A., & Krishnan, S. (2019). Extracting Cryptocurrency Price Movements from the Reddit Network Sentiment. In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA) (pp. 500–505). IEEE. https://doi.org/10.1109/ICMLA.2019.00093
Yao, W., Xu, K., & Li, Q. (2019). Exploring the Influence of News Articles on Bitcoin Price with Machine Learning. In IEEE Symposium on Computers and Communications (ISCC) (pp. 1–6). IEEE. https://doi.org/10.1109/iscc47284.2019.8969596
Yelowitz, A., & Wilson, M. (2015). Characteristics of Bitcoin users: an analysis of Google search data. Applied Economics Letters, 22(13), 1030–1036. https://doi.org/10.1080/13504851.2014.995359
Zhang, W., & Wang, P. (2020). Investor attention and the pricing of cryptocurrency market. Evolutionary and Institutional Economics Review, 17(2), 445–468. https://doi.org/10.1007/s40844-020-00182-1
Zhou, F., Wang, X., Wang, Y., Li, G., & Dong, C. (2024). Study on the Mechanical Properties and Basic Elastic Constants of Yunnan Dendrocalamus sinicus Chia et J. L. Sun. Forests, 15(11), 2017. https://doi.org/10.3390/f15112017