This journal is licensed by a Creative Commons Attribution License (CC BY-NC-SA 4.0) Attribution-Non Commercial 4.0 International. For the CC licenses, the principle isthe creative freedom. This system complements the copyright without opposing it, conscious of its importance in our culture. The content of the articles is the responsibility of each author, and does not compromise in any way, to the journal or the university. It allows the transmission and reproduction of titles, abstracts and full content, with academic, scientific, cultural ends, provided acknowledgment of the respective source. This work cannot be used for commercial purposes.
They journal does not charge authors for submission or publication.
Abstract
This paper tests the degree of integration between Mexico’s and world crude oil markets throughout the evolution of dynamics correlations during the stable, crisis and volatile periods. The estimations of DCC-GARCH model show that the correlations are positive and time-varying in responds to the origin of the oil price shocks in periods of relative calm and financial turmoil. Likewise, the results of statistic-t and bootstrap p-value confirm strongly that the correlations in the crisis period are significantly different from those in the stable and volatile periods, which provides evidence in favor of the regionalization hypothesis between crude oil markets. The findings have important economic and financial implications for the government and consumers.
References
Adelman, M. A. (1984). International oil agreements. Energy Journal, 5(3), 1-9. https://www.jstor.org/stable/41321691
Bachmeier, L. J. y Griffin, J. M. (2006). Testing for market integration crude oil, coal, and natural gas. Energy Journal, 27(2), 55-71. https://econpapers.repec.org/article/aenjournl/2006v27-02-a04.htm
Bentzen, J. (2007). Does OPEC influence crude oil price? Testing for co-movements and causality between regional crude oil prices. Applied Economics, 39(11), 1375-1385. 10.1080/00036840600606344
British Petroleum (2017). Statistical Review of World Energy. Londres: BP:
Candelon, B., Joëts, M. y Tokpavi, S. (2013). Testing for Granger causality in distribution tails: An application to oil markets integration. Economic Modeling, 31, 276-285. 10.1016/j.econmod.2012.11.049
Caporin, M. y McAleer, M. (2013). Ten things you should know about the dynamic conditional correlation representation. Econometrics, 1 (1), 115-126. 10.3390/econometrics1010115
Collins, D. y Biekpe, N. (2003). Contagion a fear for Africa equity market? Journal of Economics and Business, 55(3), 285-297. 10.1016/S0148-6195(03)00020-1
Cook, J. (1998). California crude oil [Mimeo]. Recuperado de https://www.eia.doe.gov/pub/
De Jesús, R. (2016). Estrategias dinámicas de cobertura cruzada eficiente para el mercado del petróleo mexicano: evidencia de dos modelos GARCH multivariados con término de corrección de error. Economía: Teoría y Práctica, 44, 115-146. 10.24275/ETYPUAM/NE
Domínguez, R. M., Venegas, F. y Palafox, A. O. (2018). Short-and long-term relations among prices of the Mexican Crude Oil Blend, West Texas Intermediate, and Brent: Market Trend and Risk Premia, 2005-2016. International Journal of Energy Economics and Policy, 8(3), 87-91. https://ideas.repec.org/a/eco/journ2/2018-03-13.html
Energy Information Administration (2012). International Energy Statistics. Recuperado de https://www.eia.gov/international/data/world
Engle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autore-gressive conditional heteroskedasticity models. Journal of Business and Economics Statistics, 20(3), 339-350. 10.1198/073500102288618487
Ewing, B. T y Harter, C. L. (2000). Co-movements of Alaska North Slope and UK Brent crude oil prices. Applied Economics Letters, 7(8), 553-558. 10.1080/13504850050033373
Fattouh, B. (2010). The dynamics of crude oil price differentials. Energy Economics, 32 (2), 334-342. 10.1016/j.eneco.2009.06.007
Forbes, K. y Rigobon, R. (2002). No contagion, only interdenpendence: measuring stock market co-movements. Journal of Finance, 57(5), 2223-2261. 10.1111/0022-1082.00494
Gülen, S. G. (1997). Regionalization in the world crude oil market. Energy Journal, 18(2), 109-127.
Gülen, S. G. (1999). Regionalization in the world crude oil market: Further results. Energy Journal, 20(1), 125-139. https://researchers.dellmed.utexas.edu/en/publications/regionalization-in-the-world-crude-oil-market-further-evidence
Hammoudeh, S., Thompson, M. y Ewing, B. (2008). Threshold cointegration analysis of crude oil benchmarks. Energy Journal, 29(4), 79-95. 10.2307/41323182
Jia, X., An, H., Fang, W. Sun, X. y Huang, X. (2015). How do correlations of crude oil prices co-move? A grey correlation-based wavelet perspective. Energy Economics, 49, 588-598. 10.1016/j.eneco.2015.03.008
Jiao, J. L., Fan, Y., Wei, Y. M., Han, Z. Y. y Zhang, J. T (2007). Analysis of the co-movements between Chinese and International crude oil price. International Journal of Global Energy, 27(1), 61-76.
Ji, Q. y Fan, Y. (2015). Dynamic integration of world oil prices: A reinvestigation of globalisation vs. regionalization. Applied Energy, 155(1), 171-180. https://www.deepdyve.com/lp/elsevier/dynamic-integration-of-world-oil-prices-a-reinvestigation-of-Daf3SxZWrD
Kleit, A.N. (2001). Are regional oil markets growing closer together? An arbitrage cost approach. Energy Journal, 22(2), 1-15. 10.5547/ISSN0195-6574-EJ-Vol22-No2-1
Kuck, K. y Schweikert, K. (2017). A Markov regime-switching model of crude oil market integration. Journal of Commodity Markets, 6, 16-31. 10.1016/j.jcomm.2017.03.001
Lanza, A., Manera, M. y McAleer, M. (2006). Modeling dynamic conditional correlations in WTI oil forward and futures returns. Finance Research Letters, 3 (2), 114-132. 10.1016/j.frl.2006.01.005
Laurent, S., Rombouts, J. V. y Violante, F. (2012). On the forecasting accuracy of multivariate GARCH models. Journal of Applied Econometrics, 27(6), 934-955. 10.1002/jae.1248
Li, R. y Leung, G. C. (2011). The integration of China into the world crude oil market since 1998. Energy Policy, 39(9), 5159-5165. https://ideas.repec.org/a/eee/enepol/v39y2011i9p5159-5166.html
Liao, H. C., Lin, S. C. y Huang, H. C. (2014). Are crude oil markets globalized or regionalized? Evidence from WTI and Brent. Applied Economics Letters, 21 (4), 235-241.
Liu, L., Chen, C. y Wan, J. (2013). Is world oil market "one great pool"? An example from China's and international oil market. Economic Modelling, 35, 364-373. 10.1016/j.econmod.2013.07.027
Lu, F., Hong, Y., Wang, S. Lai, K. y Liu, J. (2014). Time-varying Granger causality tests for applications in global crude oil markets. Energy Economics, 42, 289-298. 10.1016ZJ.eneco.2014.01.002
Milonas, N. y Henker, T (2001). Price spread and convenience yield behaviour in the international oil market. Applied Financial Economics, 11 (1), 23-36. 10.1080/09603100150210237
Montepeque, J. (2005). Sour crude pricing: A pressing global issue. Middle East Economic Survey, 48(14), 1-42.
Politis, D. N. y Romano, J. P (1994). The stationary bootstrap. Journal of the American Statistical Association, 89(428), 1303-1313. 10.1080/01621459.1994.10476870
Reboredo, J. C. (2011). How do crude oil prices co-move? A copula approach. Energy Economics, 33(5), 948-955. https://ideas.repec.org/a/eee/eneeco/v33y2011i5p948-955.html
Ruiz, A. y Anguiano, J. E. (2016). Modelación de las dinámicas, volatilidades e interrelaciones de los rendimientos del petróleo mexicano, BRENT y WTI. Ensayos, Revista de Economía, 2, 175-194. https://ideas.repec.org/a/ere/journl/vxxxvy2016i2p175-194.html
Weiner, R. J. (1991). Is the world oil market one great pool? Energy Journal, 12(3), 95-107. https://pdfs.semanticscholar.org/cf53/f3cd19d2dfc859ada89d740c4910c6fe333e.pdf
Wilmot, N. A. (2013). Cointegration in the oil market among regional blends. International Journal Energy Economic Policy, 3(4), 424-433. https://experts.umn.edu/en/publications/cointegration-in-the-oil-market-among-regional-blends