This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed by a Creative Commons Attribution License (CC BY-NC-SA 4.0) Attribution-Non Commercial 4.0 International. For the CC licenses, the principle isthe creative freedom. This system complements the copyright without opposing it, conscious of its importance in our culture. The content of the articles is the responsibility of each author, and does not compromise in any way, to the journal or the university. It allows the transmission and reproduction of titles, abstracts and full content, with academic, scientific, cultural ends, provided acknowledgment of the respective source. This work cannot be used for commercial purposes.
They journal does not charge authors for submission or publication.
Abstract
This paper studies the relationship between macroeconomic uncertainty and the behavior of the price system of the Uruguayan economy, using network analysis to represent the price system that makes up the Consumer Price Index (CPI). Networks were built using annual moving windows between 1997 and 2020, taking as nodes the different classes of goods and services that make up the CPI. The empirical results show that there is a set of central nodes surrounded by other peripheral ones, where the former are characterized by having a similar dynamic to many other nodes in the network, while the latter had an atypical behavior. The empirical results of the work allow to show the volatility in the price dynamics and its relationship with the macroeconomic processes, as well as the changes in the interrelationships between the prices that make up the CPI in Uruguay.
References
Alvarez, E., Brida, J. G., & Mones, P. (2021). Dinámica de la estructura de precios en Uruguay. Rect@: Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, 22(1), 1-19. https://doi.org/10.24309/recta.2021.22.1.01
Arthur, W. B. (1999). Complexity and the economy. Science, 284(5411), 107-109. 10.1126/science.284.5411.107
Basal, J., Carballo, P., Cuitiño, F., Frache, S., Mourelle, J., Rodríguez, H., Rodríguez, V., y Vicente, L. (2016). Un modelo estocástico de equilibrio general para la economía uruguaya. [Documentos de Trabajo 2016-002]. Montevideo: Banco Central del Uruguay. https://ideas.repec.org/p/bku/doctra/2016002.html
Bergara, M., Dominioni, D., y Licandro, J. A. (1995). Un modelo para comprender la “enfermedad uruguaya”. Revista de Economía, 2(2), 39-76. https://www.researchgate.net/profile/Mario-Bergara/publication/43235716_Un_Modelo _para_comprender_
la_Enfermedad_Uruguaya/links/544e62d20cf2bca5ce90b13a/Un-Modelo-paracomprender-la-Enfermedad-Uruguaya.pdf
Blanchard, O. (2014). Where danger lurks. Finance & Development, 51(3), 28-31. https://doi.org/10.5089/9781475566987.022
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., y Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008, P10008. https://iopscience.iop.org/article/10.1088/1742-5468/2008/10/P10008/
meta
Brum, C., Cuitiño, F., Mourelle, J., y Vicente, L. (2012). Modelos multivariados para predecir la inflación en Uruguay. Montevideo: Banco Central del Uruguay. /http://www.bvrie.gub.uy/local/File/JAE/2012/iees03j3221112.pdf.
Brum, C., Román, C., y Willebald, H. (2016). Un enfoque monetario de la inflación en el largo plazo. el caso de Uruguay (1870-2010). El Trimestre Económico, 83(329), 61-98. https://doi.org/10.20430/ete.v83i329.192
Cancelo, J. R., Fernández, A., Grosskoff, R., Selves, R., y Villamonte, G. (1994). Precios de transables y no transables: un enfoque ARIMA-IA. IX Jornadas de Economía del Banco Central del Uruguay. https://www.bvrie.gub.uy/local/File/JAE/1994/Cancelo y
otros.pdf
Caraballo, M. A., y Dabús, C. (2008). The determinants of relative price variability: further evidence from Argentina. Cuadernos de Economía, 45(132), 235-255. http://dx.doi.org/10.4067/S0717-68212008000200004
Chen, Y. G. (2019). Inflation, inflation expectations, and the Phillips curve. En Technical report, CBO Working Paper 2019-07. Washington: CBO. https://www.cbo.gov/system/files/2019-08/55501-CBO-working-paper-inflation-expectations-andphillips-
curve.pdf
Coibion, O., y Gorodnichenko, Y. (2015). Is the Phillips curve alive and well after all? Inflation expectations and the missing disinflation. American Economic Journal: Macroeconomics, 7(1), 197-232. https://doi.org/10.1257/mac.20130306
Coleman, S., García, S., Torres, S., y Vázquez, S. (2010). Una aproximación empírica a la relación entre inflación, pobreza, indigencia y distribución del ingreso en Uruguay 1990-2007. Montevideo: Banco Central de Uruguay.
Csárdi, G., y Nepusz, T. (2006). The Igraph software package for complex network research. https://www.researchgate.net/publication/221995787_The_Igraph_Software_Package_for_Complex_Network_Research
Cuitiño, F., Ganón, E., Tiscordio, I., y Vicente, L. (2010). Modelos univariados de series de tiempo para predecir la inflación de corto plazo. En XXV Jornadas de Economía del Banco Central del Uruguay. https://www.bcu.gub.uy/Comunicaciones/Jornadas%20de%20Economa/iees03j3101010.pdf
Curtin, R. (2009). Inflation expectations and empirical tests. En Inflation Expectations (pp. 34-61). Nueva York: Routledge.
Edmonds, B. (2017). Different modelling purposes. En Simulating Social Complexity (pp. 39-58). Berlín: Springer. https://doi.org/10.1007/978-3-319-66948-9_4
Farmer, J. D. (2012). Economics needs to treat the economy as a complex system. https://www.ineteconomics.org/uploads/papers/farmer_berlinpaper.pdf
Frache, S., Licandro, G., y Saldain, J. (2017). Variable inflation targets as monetary conditions indexes [Mimeo].
Frache, S., y Lluberas, R. (2019). New information and inflation expectations among firms [BIS Working Paper 781]. https://www.bis.org/publ/work781.pdf
Gao, X., An, H., y Zhong, W. (2013). Features of the correlation structure of price indices. PLoS ONE, 8(4), 1-9. https://doi.org/10.1371/journal.pone.0061091
Garda, P., Lanzilotta, B., y Lorenzo, F. (2004). Descripción y evaluación de un esquema metodológico para el diagnóstico y predicción de la inflación en Uruguay. En XIX Jornadas de Economía del Banco Central del Uruguay. /https://www.bcu.gub.uy/
Comunicaciones/Jornadas%20de%20Economa/iees03j3440804.pdf
Heymann, D., y Leijonhufvud, A. (1995). High Inflation: The Arne Ryde Memorial Lectures. The Economic Journal, 106(438). https://doi.org/10.2307/2235546
INE (1997). Nota metodológica: Índice de los Precios del Consumo Base marzo 1997. Reporte técnico. /https://www.ine.gub.uy/web/guest/ipc-indice-de-precios-del-consumo
INE (2010). Nota metodológica: Cambio de base diciembre 2010 [Reporte técnico]. /https://www.ine.gub.uy/web/guest/ipc-indice-de-precios-del-consumo
Licandro, J. A. (2000). The scope for inflation targeting in Uruguay [Reporte técnico]. http://www.lacea.org/pdf/licandro.pdf
McCallum, B. T. (1988). Robustness properties of a rule for monetary policy. En Carnegie- Rochester Conference Series on Public Policy (vol. 29, pp. 173-203). https://doi.org/10.1016/0167-2231(88)90011-5
Mordecki, G. (2018). Uruguay en democracia: treinta años de evolución económica (1985-2015). Oikos Polis, 3(1), 81-135.
Newman, M. (2010). Networks: An introduction. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
Noyola Vázquez, J. (1956). El desarrollo económico y la inflación en México y otros países latinoamericanos. Investigación Económica, 16(4), 603-648.
Olivera, J. H. (1960). La teoría no monetaria de la inflación. El Trimestre Económico, 27(4), 616-628.
Samuelson, P. A. (1964). Theoretical notes on trade problems. The Review of Economics and Statistics, 46(2), 145-154. https://doi.org/10.2307/1928178
Sarantitis, G. A., Papadimitriou, T., y Gogas, P. (2018). A network analysis of the United Kingdom’s Consumer Price Index. Computational Economics, 51(2), 173-193. https://doi.org/10.1007/s10614-016-9625-9
Sari, N. R., Mahmudy, W. F., y Wibawa, A. P. (2016). Backpropagation on neural network method for inflation rate forecasting in Indonesia. International Journal of Advances in Soft Computing & Its Applications, 8(3), 70-87.
Taylor, J. B. (1993). Discretion versus policy rules in practice. En Carnegie-Rochester Conference Series on Public Policy (vol. 39, pp. 195-214). https://www.sciencedirect.com/science/article/abs/pii/016722319390009L
Yukalov, V. I., y Sornette, D. (2014). Self-organization in complex systems as decision making. Advances in Complex Systems, 17(3-4), 1450016. https://doi.org/10.1142/S0219525914500167
Zacheo, L., y Güenaga, M. (2019). Traspaso de tipo de cambio a precios y relación con la credibilidad de la política monetaria. Technical report. https://www.bcu.gub.uy/Comunicaciones/Jornadas%20de% 20Economa/ZACHEO LAURA 2019 6008.pdf