
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed by a Creative Commons Attribution License (CC BY-NC-SA 4.0) Attribution-Non Commercial 4.0 International. For the CC licenses, the principle isthe creative freedom. This system complements the copyright without opposing it, conscious of its importance in our culture. The content of the articles is the responsibility of each author, and does not compromise in any way, to the journal or the university. It allows the transmission and reproduction of titles, abstracts and full content, with academic, scientific, cultural ends, provided acknowledgment of the respective source. This work cannot be used for commercial purposes.
They journal does not charge authors for submission or publication.
Abstract
This study investigates the volatility dynamics and time-varying correlations between Bitcoin (BTC) and major financial and commodity markets, including gold, oil, NASDAQ, NIKKEI, FTSE, DAX, and the U.S. Dollar Index (USDINX). Using daily data and GARCH-family models, we quantify persistence, asymmetry, and mediumterm memory in BTC volatility. Model selection using loglikelihood, SIC, and AIC criteria identifies EGARCH as
the best model for capturing conditional variance behavior.
We then employ a DCC-MGARCH framework to estimate evolving cross-market correlations. Results indicate that BTC volatility is highly persistent, exhibits stronger reactions to negative shocks, and shows moderate mean reversion. Gold displays the lowest persistence, confirming its role as a stable diversifier. DCC-MGARCH estimates reveal weak positive BTC-Gold correlations, negative BTC-USDINX correlations, and no significant BTC-Oil or BTC-DAX linkages, implying substantial diversification potential. Notably, BTC-NIKKEI correlations strengthened during the COVID-19 period, while BTC-Gold correlations modestly increased. These findings underscore the importance of dynamic portfolio strategies, as optimal weights shift in response to evolving conditional covariances, rendering static allocations suboptimal. For policymakers, volatility persistence and correlation thresholds can inform leverage and exposure limits, particularly when the linkages between BTC and traditional assets intensify.
References
Akkaya, M. (2021). Disruptive Financial Innovation and Big Data Implications in Digital Finance. In M. E. A. Abdelli, W. Ajili-Ben Youssef, U. Özgöker, & I. Ben Slimene (Eds.), Big Data for Entrepreneurship and Sustainable Development (pp. 69–90). Taylor & Francis. https://doi.org/10.1201/9781003090045-4
Akkaya, M (2022). Kripto Para İşlemlerini Yönlendiren Ekonomik ve Finansal Faktörler: Bitcoin Fiyat Oluşumu. Tesam Akademi, 9(1), 209–226. https://doi.org/10.30626/tesamakademi.979573
Al-Yahyaee, K. H., Mensi, W., Al-Jarrah, I. M. W., Hamdi, A., & Kang, S. H. (2019). Volatility forecasting, downside risk, and diversification benefits of Bitcoin and oil and international commodity markets: A comparative analysis with yellow metal. The North American Journal of Economics and Finance, 49, 104–120. https://doi.org/10.1016/j.najef.2019.04.001
Ammous, S., & D’Andrea, F. A. M. C. (2022). Hard Money and Time Preference: a Bitcoin perspective. MISES: Interdisciplinary Journal of Philosophy, Law and Economics, 10. https://doi.org/10.30800/mises.2022.v10.1495
Azimova, T. (2022). Modelling volatility transmission in regional Asian stock markets. The Journal of Economic Asymmetries, 26, e00274. https://doi.org/10.1016/j.jeca.2022.e00274
Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3–30. https://doi.org/10.1016/S0304-4076(95)01749-6
Baur, D. G., & Hoang, L. (2021). The Bitcoin gold correlation puzzle. Journal of Behavioral and Experimental Finance, 32, 100561. https://doi.org/10.1016/j.jbef.2021.100561
Baur, D. G., Hong, K., & Lee, A. D. (2018). Bitcoin: medium of exchange or speculative assets? Journal of International Financial Markets, Institutions and Money, 54, 177–189. https://doi.org/10.1016/j.intfin.2017.12.004
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1
Brooks, C. (2008). RATS Handbook to accompany introductory econometrics for finance. Cambridge
Books. https://doi.org/10.1017/CBO9780511814082
Chang, H. L., Nie, W. Y., Chang, L. H., Cheng, H. W., & Yen, K. C. (2023). Cryptocurrency Momentum and VIX premium. Finance Research Letters, 57, 104196. https://doi.org/10.1016/j.frl.2023.104196
Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L. (2018). Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics Letters, 165, 28–34.
Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica: Journal of the Econometric Society, 1057–1072. https://doi.org/10.2307/1912517
Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 119(534), 158–171. https://doi.org/10.1111/j.1468-0297.2008.02208.x
Ding, Z., Granger, C. W. J., & Engle, R. F. (1993). A Long Memory Property of Stock Market Returns and a New Model. Journal of Empirical Finance, 1, 83–106. https://doi.org/10.1016/0927-5398(93)90006-D
Dyhrberg, A. H. (2016a). Bitcoin, gold and the dollar–A GARCH volatility analysis. Finance Research Letters, 16, 85–92. https://doi.org/10.1016/j.frl.2015.10.008
Dyhrberg, A. H. (2016b). Hedging capabilities of Bitcoin. Is it the virtual gold? Finance Research Letters, 16, 139–144. https://doi.org/10.1016/j.frl.2015.10.025
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 987–1007. https://doi.org/10.2307/1912773
Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of business & economic statistics, 20(3), 339–350. https://doi.org/10.1198/073500102288618487
Erdas, M. L., & Caglar, A. E. (2018). Analysis of the relationships between Bitcoin and exchange rate, commodities and global indexes by asymmetric causality test. Eastern Journal of European Studies, 9(2).
Fousekis, P. (2020). Sign and size asymmetry in the stock returns-implied volatility relationship. The Journal of Economic Asymmetries, 21, e00162. https://doi.org/10.1016/j.jeca.2020.e00162
Ghorbel, A., Frikha, W., & Manzli, Y. S. (2022). Testing for asymmetric non-linear short-and longrun relationships between crypto-currencies and stock markets. Eurasian Economic Review, 12(3), 387–425. https://doi.org/10.1007/s40822-022-00206-8
Glaser, F., Zimmermann, K., Haferkon, M., Weber, M.C., & Siering, M. (2014). Bitcoin - Asset or Currency? Revealing Users’ Hidden Intentions. ECIS 2014 (Tel Aviv). https://ssrn.com/abstract=2425247
Glosten, L., Jagannathan, R., & Runkle, D. (1993). Relationship between The Expected Value and The Volatility of The Nominal Excess Return on Stocks. Journal of Finance, 48, 1779–1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
Gökgöz, H., Syed, A. A., Alnafisah, H., & Jeribi, A. (2025). Safe Haven for Bitcoin: Digital and Physical Gold or Currencies? Journal of Theoretical and Applied Electronic Commerce Research, 20(3), 171. https://doi.org/10.3390/jtaer20030171
Greenberg, A. (2011, April 20). Crypto Currency. Forbes.com. https://www.forbes.com/forbes/2011/0509/technology-psilocybin-bitcoins-gavin-andresen-crypto-currency.html
Guesmi, K., Saadi, S., Abid, I., & Ftiti, Z. (2019). Portfolio diversification with virtual currency: Evidence from bitcoin. International Review of Financial Analysis, 63, 431–437. https://doi.org/10.1016/j.irfa.2018.03.004
Guizani, S., & Nafti, I. K. (2019). The determinants of bitcoin price volatility: An investigation with ARDL model. Procedia computer science, 164, 233–238. https://doi.org/10.1016/j.procs.2019.12.177
Gujarati, D. N. (2002). Basic Econometrics (4th ed.). McGraw-Hill.
Gupta, S. K., Fegade, A., Padhye, P., Mohture, A., Kalshetti, P., & Murthy, Y. S. (2024). Evaluating the Effect of COVID-19-19 on Major World Indices: In relation to Gold, Silver, Crude Oil, and Bitcoin. Academy of Marketing Studies Journal, 28(2).
Gürgün, G., & Ünalmış, İ. (2014). Is gold a safe haven against equity market investment in emerging and developing countries? Finance Research Letters, 11(4), 341–348. https://doi.org/10.1016/j.frl.2014.07.003
Hou, Y., Li, Y., Hu, Y., & Oxley, L. (2022). Time-varying spillovers of higher moments between Bitcoin and crude oil markets and the impact of the US–China trade war: a regime-switching perspective. The European Journal of Finance, 1–31. https://doi.org/10.1080/1351847X.2022.2067002
Jareño, F., de la O. González, M., Tolentino, M., & Sierra, K. (2020). Bitcoin and gold price returns: A quantile regression and NARDL analysis. Resources Policy, 67, 101666. https://doi.org/10.1016/j.resourpol.2020.101666
Jin, M., Chen, X., & Lin, S. J. (2019). Reducing the bandwidth of block propagation in bitcoin network with erasure coding. IEEE Access, 7, 175606–175613. https://doi.org/10.1109/ACCESS.2019.2957496
Jiang, Y., Nie, H., & Ruan, W. (2018). Time-varying long-term memory in Bitcoin market. Finance Research Letters, 25, 280–284. https://doi.org/10.1016/j.frl.2017.12.009
Jiang, S., Li, Y., Lu, Q., Wang, S., & Wei, Y. (2022). Volatility communicator or receiver? Investigating volatility spillover mechanisms among Bitcoin and other financial markets. Research in International Business and Finance, 59, 101543. https://doi.org/10.1016/j.ribaf.2021.101543
Klein, T., Thu, H. P., & Walther, T. (2018). Bitcoin is not the New Gold–A comparison of volatility, correlation, and portfolio performance. International Review of Financial Analysis, 59, 105–116. https://doi.org/10.1016/j.irfa.2018.07.010
Kurihara, Y., & Fukushima, A. (2018). How Does Price of Bitcoin Volatility Change? International Research in Economics and Finance, 2(1), 8–14. https://doi.org/10.20849/iref.v2i1.317
Kwon, J. H. (2020). Tail behavior of Bitcoin, the dollar, gold and the stock market index. Journal of International Financial Markets, Institutions and Money, 67, 101202. https://doi.org/10.1016/j.intfin.2020.101202
Liu, J., & Serletis, A. (2019). Volatility in the Cryptocurrency Market. Open Economies Review, 30, 779–811. https://doi.org/10.1007/s11079-019-09547-5
Lopez-Cabarcos, M. A., Perez-Pico, A. M., Pineiro-Chousa, J., & Sevic, A. (2021). Bitcoin volatility, stock market and investor sentiment. Are they connected? Finance Research Letters, 38, 1–7. https://doi.org/10.1016/j.frl.2019.101399
Loukil, S., Syed, A. A., Hamza, F., & Jeribi, A. (2025). Decoding the dynamic connectedness between traditional and digital assets under dynamic economic conditions. Journal of Theoretical and Applied Electronic Commerce Research, 20(2), 97. https://doi.org/10.3390/jtaer20020097
Mensi, W., Al-Yahyaee, K. H., & Kang, S. H. (2019). Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from Bitcoin and Ethereum. Finance Research Letters, 29, 222–230. https://doi.org/10.1016/j.frl.2018.07.011
Mohammadi, M., Farzin, M., Hosseini, S., & Mohammadi, T. (2023). Investigating the Impact of the Dollar Index and Gold Return Rate on Bitcoin Price: Non-linear and Asymmetric Analysis. International Journal of Business and Development Studies, 15(1).
Munyas, T., & Atasoy, F. (2021). An empirical investigation of the relationship between Bitcoin and developed and developing country stock markets. Journal of Accounting, Finance and Auditing Studies, 7(3), 104–120. https://doi.org/10.32602/jafas.2021.021
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, 21260.
Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 347–370. https://doi.org/10.2307/2938260
Ng, A. (2000). Volatility spillover effects from Japan and the US to the Pacific–Basin, Journal of International Money and Finance, 19, 207–233. https://doi.org/10.1016/S0261-5606(00)00006-1
Oad Rajput, S. K., Soomro, I. A., & Soomro, N. A. (2022). Bitcoin sentiment index, bitcoin performance and US dollar exchange rate. Journal of Behavioral Finance, 23(2), 150–165. https://doi.org/10.1080/15427560.2020.1864735
Okorie, D. I., & Lin, B. (2020). Crude oil price and cryptocurrencies: evidence of volatility connectedness and hedging strategy. Energy economics, 87, 104703. https://doi.org/10.1016/j.eneco.2020.104703
Omri, I. (2023). Directional predictability and volatility spillover effect from stock market indexes to Bitcoin: evidence from developed and emerging markets. The Journal of Risk Finance, 24(2), 226–243. https://doi.org/10.1108/JRF-06-2022-0130
Polasik, M., Piotrowska, A.I., Wisniewski, T.P., Kotkowski, R., & Lightfoot, G. (2015). Price Fluctuations and the Use of Bitcoin: An Empirical Inquiry. International Journal of Electronic Commerce, 20(1), 9–49. https://doi.org/10.1080/10864415.2016.1061413
Salisu, A. A., Ndako, U. B., & Vo, X. V. (2023). Oil price and the Bitcoin market. Resources Policy, 82, 103437. https://doi.org/10.1016/j.resourpol.2023.103437
Scaillet, O., Treccani, A., & Trevisan, C. (2017). High-Frequency Jump Analysis Of The Bitcoin Market. Swiss Finance Institute Research Paper, 17–19. https://doi.org/10.2139/ssrn.2982298
Selmi, R., Mensi, W., Hammoudeh, S., & Bouoiyour, J. (2018). Is Bitcoin a hedge, a safe haven or a diversifier for oil price movements? A comparison with gold. Energy Economics, 74, 787–801. https://doi.org/10.1016/j.eneco.2018.07.007
Sin, C. Y., & White, H. (1996). Information criteria for selecting possibly misspecified parametric models. Journal of Econometrics, 71(1–2), 207–225. https://doi.org/10.1016/0304-4076(94)01701-8
Telek, C., & Şit, A. (2020). The Relationship of Crypto Coins with Gold and Foreign Exchange: The Case of Bitcoin. Turkish Studies - Economy, 15(2), 913–924. https://doi.org/10.29228/TurkishStudies.42650
Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80–82. https://doi.org/10.1016/j.econlet.2016.09.019
Uzonwanne, G. (2021). Volatility and return spillovers between stock markets and cryptocurrencies. The Quarterly Review of Economics and Finance, 82, 30–36. https://doi.org/10.1016/j.qref.2021.06.018
Wang, C., Shen, D., & Li, Y. (2022). Aggregate investor attention and Bitcoin return: The long short-term memory networks perspective. Finance Research Letters, 49, 103143. https://doi.org/10.1016/j.frl.2022.103143
Wang, X., Chen, X., & Zhao, P. (2020). The relationship between Bitcoin and stock market. International Journal of Operations Research and Information Systems (IJORIS), 11(2), 22–35. https://doi.org/10.4018/IJORIS.2020040102
Wen, F., Tong, X., & Ren, X. (2022). Gold or Bitcoin, which is the safe haven during the COVİD-19 pandemic? International Review of Financial Analysis, 81, 102121. https://doi.org/10.1016/j.irfa.2022.102121
Yermack, D. (2015). Is Bitcoin a real currency? An economic appraisal. In Handbook of digital currency (pp. 31–43). Academic Press. https://doi.org/10.1016/B978-0-12-802117-0.00002-3
Zwick, H. S., & Syed, S. A. S. (2019). Bitcoin and gold prices: A fledging long-term relationship. Theoretical Economics Letters, 9(7), 2516–2525. https://doi.org/10.4236/tel.2019.97159





