This journal is licensed by a Creative Commons Attribution License (CC BY-NC-SA 4.0) Attribution-Non Commercial 4.0 International. For the CC licenses, the principle isthe creative freedom. This system complements the copyright without opposing it, conscious of its importance in our culture. The content of the articles is the responsibility of each author, and does not compromise in any way, to the journal or the university. It allows the transmission and reproduction of titles, abstracts and full content, with academic, scientific, cultural ends, provided acknowledgment of the respective source. This work cannot be used for commercial purposes.
They journal does not charge authors for submission or publication.
Abstract
In this work models of short term are considered to foretell the inflation of transables and non transables goods in Colombia. These models did not exist in the Central bank before 2004 and are very useful for the decision making of monetary policy. Also the benefits are evaluated, in capacity and analysis terms prognosis, to use methods that capture the possible nonlinearity of the curve of Phillips in the Colombian data. Although different reasons exist that justify a relation nonlinear of short term between product and inflation, each one of them suggests a different form for the curve. Therefore, the flexible square minimums are used artificial neuronal networks (ANN) and (FLS), procedures that have the great advantage of which they beforehand do not impose any functional form that can slant the results. Once the estimation is made of the models of inflation of transables and of non transables, the prognoses of these two nonlinear models with those of two linear estimations are compared, the impulse functions are analyzed answer of each one of the models and in addition a test of nonlinearity is made. One is that the curve of Phillips in Colombia could be nonlinear and therefore turns out pertinent to consider models nonlinear for his estimation. Finally, with these models it is tried to explain the process of desinflación that has lived the Colombian economy in the last years as much in the inflation on transables, like in the one of non transables.
Keywords:
References
ARANGO, C., HERNÁNDEZ, J. N., LÓPEZ, E.. y MISAS, M. (2003). “La Demanda de Efectivo en Colom bia: Una Caja Negra a la Luz de las Redes Neuronales”. Borradores de Economía No. 268. Banco de la República.
BALAKRISHNAN, R. y J. López-Salido. (2002). “Understanding UK inflation: the role of openness”. Working Paper No. 164, Bank of England.
BALL, L., N. Mankiw. and D. Rom er. (1988). “The New Keynesian Economics and the Output, Inflation Trade- off” ., 1 : 1- 65.
CALVO, G. ( 1983 ) . “ Staggered Prices in a Utility Maximizing Framework” . , 12: 393- 398 .
CLARK, P., D. Laxton and D. Rose. ( 1996) . “ Asym m etry in the US out put inflat ion nexus” . I MF St aff Papers, 43: 216- 251 .
DUPASQUI ER, C. and N. Ricket ts. ( 1998) . “ Nonlinearities in the output- inflat ion relationship: som e em pirical results for Canada” . Working Paper 98 - 14 . Bank of Canada.
EI SNER, R. (1997). “New View of the NAI RU”. I n, Edward Elgar Publishing, UK.
ELI ASSON, A. ( 2001) . “Is the Short- run Phillips Curve Nonlinear? Empirical Evidence for Australia, Sweden and the United States”. Sveriges Riksbank Working Paper Series, 124.
FI LARDO, A. J. ( 1998) . “New Evidence on the Output Cost of Fighting I nflation” . , third quarter: 33- 61.
FRANSES, P. H. y D. Van Dijk. (2000)., Cam bridge University Press.
FRI EDMAN, M. (1968) . “The Role of Monetary Policy”, 58: 1- 17.
GALÍ , J. y M. Gertler. ( 1999) . “Inflation Dynamics: A Structural Econometric Analysis” . Journal of Monetary Economics, 44: 195- 222.
GÓMEZ, J. y JULI O J. M. (2000). “An estimation of the nonlinear Phillips curve in Colombia”. Borradores de Economía No. 160. Banco de la República.
GORDON, R. (1997). “The time- varying NAIRU and its implications for economic policy” ., 11, 11- 32.
KALABA, R. y L. Tesfatsion. (1989) . “Time- Varying Linear Regression via Flexible Least Squares”, Computers Math Applied, Vol. 17, No. 89, pg. 1215- 1244.
IBID. (1990). “Flexible Least Squares for Approximately Linear System s” , I EEE Transactions on System s, Man and Cybernetics, Vol. 20 , No. 5, pg. 978- 989 .
LÓPEZ, E. y MI SAS, M. ( 1999) . “ Un examen em pírico de la curva de Phillips en Colombia” . Borradores de Economía No. 117. Banco de la República.
López. E., M. Misas y P. Querubín. (1999). “La Inflación en Colombia: una aproximación desde las redes neuronales”. Borradores de Economía No. 199. Banco de la República.
Melo, L. F. y M. Misas. (2004). “Modelos Estructurales de Inflación en Colombia: Estimación a través de Mínimos Cuadrados Flexibles”. Borradores de Economía No. 283. Banco de la República.
Nigrinis, M. (2003). “¿Es lineal la Curva de Phillips en Colombia?”. Borradores de Economía No. 282. Banco de la República.
Phillips, A. W. (1958). “The relation between unemployment and the rate of change of money wage rates in the United Kingdom, 1861- 1957”. 25: 283- 299.
Shapiro, C. and J. Stiglitz. (1984). “Equilibrium Unemployment as a Worker Discipline Device”. 74: 433- 444
Taylor, J. (1980) . “Aggregate Dynamics and Staggered Contracts”. 88 : 1- 23.
Tkacz, G. y S. Hu. ( 1999) . “ Forecasting GDP Growth Using Artificial Neural Networks” . Working Paper 99- 3, Bank of Canada.
Uribe, J., Vargas, H. y Gómez, J. “The Implementation of Inflation Targeting in Colombia” . Borradores de Economía No. 202. Banco de la República.