How to Cite
Alonso Cifuentes, J. C., & Ocampo Arango, M. P. (2024). Using tools from network theory and community detection to study the evolution of the structure of the Colombian economy for the period 2005-2021. Revista Finanzas Y Política Económica, 16(2). Retrieved from https://revfinypolecon.ucatolica.edu.co/article/view/5774
License
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This journal is licensed by a Creative Commons Attribution License (CC BY-NC-SA 4.0) Attribution-Non Commercial 4.0 International. For the CC licenses, the principle isthe creative freedom. This system complements the copyright without opposing it, conscious of its importance in our culture. The content of the articles is the responsibility of each author, and does not compromise in any way, to the journal or the university. It allows the transmission and reproduction of titles, abstracts and full content, with academic, scientific, cultural ends, provided acknowledgment of the respective source. This work cannot be used for commercial purposes. 

Licencia de Creative Commons

They journal does not charge authors for submission or publication.

Abstract

This paper employs network theory tools to examine the structural evolution of the Colombian economy. To achieve the objective, we constructed Input-Output (I-O) tables for 61 economic activities from 2005 to 2021 and used metrics such as diameter and density to characterize the networks. In addition, we use community detection algorithms to identify the economic activities with the strongest interconnection each year. Finally, for the first time in the network analysis literature, we use a cluster stability analysis methodology to detect year-to-year changes in community composition. Seven communities and network changes were reflected in the I-O tables during 2005–2021. There is no substantial evidence in favor of a structural change in the Colombian economy, at least from a community point of view.

Keywords:

References

Acemoglu, D., Carvalho, V., Ozdaglar, A., & Tahbaz-Salehi, A. (2012). The Network Origins of Aggregate Fluctuations. Econometrica, 80(5), 1977–2016. https://doi.org/10.3982/ECTA9623 . .

Alonso, J., & Carabali, J. A. (2019). Breve tutorial para visualizar y calcular métricas de redes (grafos) en R (para Económistas). Universidad Icesi.

Araújo, T., & Faustino, R. (2017). The topology of inter-industry relations from the Portuguese national accounts. Physica A: Statistical Mechanics and its Applications, 479, 236-248. https://doi.org/10.1016/j.physa.2017.03.018

Aroche-Reyes, F. (2003). A qualitative input-output method to find basic economic structures. Papers in Regional Science, 82, 581-590. https://doi.org/10.1007/S10110-003-0149-Z.

Barro, R. J., & Sala-i-Martin, X. (1992). Convergence. Journal of Political Economy, 100(2), 223-251. https://doi.org/10.1086/261816

Batool, F., & Hennig, C. (2021). Clustering with the Average Silhouette Width. Computational Statistics & Data Analysis, 158, 107190. https://doi.org/10.1016/j.csda.2021.107190

Battiston, S., Rodrigues, J., & Zeytinoglu, H. (2005). The network of inter-regional direct investment stocks across Europe. Advances in Complex Systems, 10, 29-51. https://doi.org/10.1142/S0219525907000933

Baumol, W. (2000a). What Marshall didn't know: On the twentieth century's contributions to economics. The Quarterly Journal of Economics, 115(Issue 1), 1-44, https://doi.org/10.1162/003355300554656

Baumol, W. (2000b). Leontief’s great leap forward: Beyond Quesnay, Marx and von Bortkiewicz. Economic Systems Research, 12(2), 141-152. https://doi.org/10.1080/09535310050005662

Beaton, M. K., Cebotari, A., Ding, X., & Komaromi, A. (2017). Trade integration in Latin America: A network perspective. IMF Working Papers. https://doi.org/10.2139/ssrn.3014078

Beygelzimer A, Kakadet S, Langford J, Arya S, Mount D, & Li S (2024). _FNN: Fast Nearest Neighbor Search Algorithms and Applications_. R package version 1.1.4, https://CRAN.R-project.org/package=FNN.

Blöchl, F., Theis, F., Vega-Redondo, F., & Fisher, E. (2011). Vertex centralities blancBlanco, G. (2017). Índice de complejidad económica para los departamentos de Colombia, evolución 2012 – 2015. Working paper Facultad de Ciencias Económicas; Universidad de Colombia: Bogotá, Colombia, https://repositorio.unal.edu.co/bitstream/handle/unal/63203/1015428688.2017.pdf?sequence=1

Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., & Wagner, D. (2008). On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2), 172-188. https://doi.org/10.1109/TKDE.2007.190689

Charrad, M., Ghazzali, N, Boiteau, V., & Niknafs A. (2014). NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. Journal of Statistical Software, 61(6), 1-36. URL http://www.jstatsoft.org/v61/i06/

Clemente, G., & Cornaro, A. (2019). A novel measure of edge and vertex centrality for assessing robustness in complex networks. Soft Computing, 24, 13687-13704. https://doi.org/10.1007/s00500-019-04470-w

Contreras, M. G. A., & Fagiolo, G. (2014). Propagation of economic shocks in input-output networks: A cross-country analysis. Physical Review E, 90(6), 062812. https://doi.org/10.1103/PhysRevE.90.062812

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695. https://igraph.org

DANE (2013). Metodología de la matriz insumo-producto (MIP). https://www.dane.gov.co/files/investigaciones/pib/especiales/metodologia_matriz_insumo_producto_07_13.pdf

DANE. (2020). Revisión 4 Adaptada para Colombia CIIU Rev. 4 A.C. (2020). https://www.dane.gov.co/files/sen/nomenclatura/ciiu/CIIU_Rev_4_AC2020.pdf

DePaolis, F., Murphy, P., & De Paolis M. C. (2022). Identifying key sectors in the regional economy: A network analysis approach using input-output data. Research Square. https://doi.org/10.21203/rs.3.rs-1666449/v1

Ding, J., & Lu, Y. (2015). Control backbone: An index for quantifying a node's importance for the network controllability. Neurocomputing, 153, 309-318. https://doi.org/10.1016/j.neucom.2014.11.024

Domínguez, A., Santos-Marquez, F., & Mendez, C. (2021). Sectoral productivity convergence, input-output structure and network communities in Japan. Structural Change and Economic Dynamics, 59, 582-599. https://doi.org/10.1016/j.strueco.2021.10.012

Dotta, V. (2021). Propagación de shocks económicos a través de redes insumo-producto : una aplicación para los países de América del Sur. Tesis de maestría. Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. https://hdl.handle.net/20.500.12008/31136

Drejer, I. (2000). Comparing patterns of industrial interdependence in national systems of innovation - A study of Germany, the United Kingdom, Japan and the United States. Economic Systems Research, 12, 377-399. https://doi.org/10.1080/09535310050120943

Fagiolo, G., Reyes, J., & Schiavo, S. (2008). On the topological properties of the world trade web: A weighted network analysis. Physica A: Statistical Mechanics and its Applications, 387(15), 3868-3873. https://doi.org/10.1016/j.physa.2008.01.050

Galili, T (2015). dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics. DOI:10.1093/bioinformatics/btv428

García, A. (2013). Modelling linkages versus leakages networks: The case of Spain. Regional and Sectoral Economic Studies, 13, 43-54. https://pubs.acs.org/doi/suppl/10.1021/acs.est.5b05094/suppl_file/es5b05094_si_001.pdf

García, A., Morillas, A., & Ramos, C. (2008). Key sectors: A new proposal from network theory. Regional Studies, 42(7), 1013-1030. https://doi.org/10.1080/00343400701654152

Giuliani, E. (2013). Network dynamics in regional clusters: Evidence from Chile. Research Policy, 42, 1406-1419. https://doi.org/10.1016/J.RESPOL.2013.04.002

Graham, B., & De Paula, A. (2020). The econometric analysis of network data. Academic Press. https://doi.org/10.1920/wp.cem.2020.420

Granovetter, M. (1978). Threshold models of collective behavior. American Journal of Sociology, 83(6), 1420-1443. https://doi.org/10.1086/226707

Ghosh, S., & Roy, J. (1998). Qualitative Input–Output Analysis of the Indian Economic Structure. Economic Systems Research, 10(3), 263–274. https://doi.org/10.1080/762947111

Guo, J., & Planting, M. A. (2000). Using input-output analysis to measure US economic structural change over a 24 year period. BEA Papers 0004, Bureau of Economic Analysis. https://www.bea.gov/system/files/papers/WP2000-1.pdf

Hausmann, R., & Hidalgo, C. A. (2011). The network structure of economic output. Journal of Economic Growth, 16, 309-342. https://doi.org/10.1007/s10887-011-9071-4

Hewings, G. J. D. (1982). The Empirical Identification of Key Sectors in an Economy: A Regional Perspective. The Developing Economies, 20(2), 173–195. https://doi.org/10.1111/j.1746-1049.1982.tb00444.x

Hidalgo, C. A., & Hausmann, R. (2010). Inferring macroeconomic complexity from country-product network data. AAAI Spring Symposium: Artificial Intelligence for Development. https://cdn.aaai.org/ocs/1183/1183-5889-1-PB.pdf

Hidalgo, C. A., Klinger, B., Barabási, A. L., & Hausmann, R. (2007). The product space conditions the development of nations. Science, 317(5837), 482-487. https://doi.org/10.1126/science.1144581

Hirschman, A. O. (1958). The Strategy of Economic Development. Yale University Press.

Holub, H., & Schnabl, H. (1985). Qualitative input-output analysis and structural information. Economic Modelling, 2, 67-73. https://doi.org/10.1016/0264-9993(85)90010-0

https://doi.org/10.1017/CBO9780511626982

Iori, G., Masi, G., Precup, O., Gabbi, G., & Caldarelli, G. (2008). A network analysis of the Italian overnight money market. Journal of Economic Dynamics and Control. https://doi.org/10.1016/J.JEDC.2007.01.032

Jankowska, A., Nagengast, A., & Perea, J. (2012). The product space and the middle-income trap: Comparing Asian and Latin American experiences. OECD Development Centre Working Papers, (311), OECD Publishing. https://doi.org/10.1787/5k9909j2587g-en

Jorgenson, D. W. (2016). Econometric general equilibrium modeling. Journal of Policy Modeling, 38(3), 436-447. https://doi.org/10.1016/j.jpolmod.2016.02.004

König, M., Battiston, S., Napoletano, M., & Schweitzer, F. (2008). On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogeneous Media. https://doi.org/10.3934/NHM.2008.3.201

Laumas, P. S. (1975). Key sectors in some underdeveloped countries. Kyklos, 28(1). https://doi.org/10.1111/j.1467-6435.1975.tb01934.x

An, W. & Liu, Y (2023). _keyplayer: Locating Key Players in Social Networks_. R package version 1.0.4, https://CRAN.R-project.org/package=keyplayer

Lora, E. (2021). Forecasting formal employment in cities. Revista de Economía del Rosario, 24(1), 1-38. https://doi.org/10.12804/revistas.urosario.edu.co/economia/a.10029

Lora, E., & Prada, S. I. (2023). Técnicas de medición económica: metodología y aplicaciones en Colombia (6.ª ed.). Editorial Universidad Icesi. https://doi.org/10.18046/EUI/tme.6

Lorenz, J., Battiston, S., & Schweitzer, F. (2009). Systemic risk in a unifying framework for cascading processes on networks. The European Physical Journal B, 71, 441-460. https://doi.org/10.1140/epjb/e2009-00347-4

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.(2022). cluster: Cluster Analysis Basics and Extensions. R package version 2.1.5. https://CRAN.R-project.org/package=cluster

McNerney, J., Fath, B. D., & Silverberg, G. (2013). Network structure of inter-industry flows. Physica A: Statistical Mechanics and its Applications, 392(24), 6427-6441. https://doi.org/10.1016/j.physa.2013.07.063

Miller, R. E., & Blair, P. D. (2009). Input-output analysis: Foundations and extensions (2nd ed.). Cambridge University Press.

Montresor, S., & Marzetti, G. V. (2009). Applying social network analysis to input–output based innovation matrices: An illustrative application to six OECD technological systems for the middle 1990s. Economic Systems Research, 21(2), 129-149. https://doi.org/10.1080/09535310902940228

Myers, C. A., & Shultz, G. P. (1951). The Dynamics of a Labor Market: A Study of the Impact of Employment Changes on Labor Mobility, Job Satisfactions, and Company and Union Policies. Prentice-Hall.

Newman, M. E. J., & Girvan, M. (2002). Mixing patterns and community structure in networks. arXiv: Statistical Mechanics of Complex Networks (pp. 66-87). Springer. https://doi.org/10.1007/978-3-540-44943-0_5

Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physics Review E, 69, 026113. https://doi.org/10.1103/PhysRevE.69.026113

Niño, J. O. P. (2020). Detección de comunidades en redes: algoritmos y aplicaciones. arXiv preprint arXiv:2009.08390.

O’Clery, N., Curiel, R. P., & Lora, E. (2019). Commuting times and the mobilisation of skills in emergent cities. Applied Network Science, 4(1), 1-27. https://doi.org/10.1007/s41109-019-0235-z

Pons, P., & Latapy, M. (2005). Computing communities in large networks using random walks. Computer and Information Sciences ISCIS 2005. Springer. https://doi.org/10.1007/11569596_31

Rasmussen, P. N. (1956). Studies in Inter-Sectoral Relations. E. Harck.

Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Physical Review E, 74(1). https://doi.org/10.1103/PhysRevE.74.016110

R Core Team (2023). R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rosenberg, A., & Hirschberg, J. (2007). V-measure: A conditional entropy-based external cluster evaluation measure. Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL) (pp. 410-420). Association for Computational Linguistics. https://aclanthology.org/D07-1043

Santos, J. M., & Embrechts, M. (2009). On the use of the adjusted rand index as a metric for evaluating supervised classification. Artificial Neural Networks–ICANN 2009: 19th International Conference, Limassol, Cyprus, September 14-17, 2009, Proceedings, Part II 19 (pp. 175-184). Springer. https://doi.org/10.1007/978-3-642-04277-5_18

Schnabl, H. (1994). The evolution of production structures, analyzed by a multi-layer procedure. Economic Systems Research, 6, 51-68. https://doi.org/10.1080/09535319400000004

Schultz, S. (1977). Approaches to identifying key sectors empirically by means of input‐output analysis. The Journal of Development Studies, 14(1), 77-96. https://doi.org/10.1080/00220387708421663

Slater, P. (1977). The determination of groups of functionally integrated industries in the United States using a 1967 interindustry flow table. Empirical Economics, 2, 1-9. https://doi.org/10.1007/BF01764717

Slater, P. (1978). The network structure of the United States input-output table. Empirical Economics, 3, 49-70. https://doi.org/10.1007/BF01764564

Sonis M., & Hewings, G. J. (1998). Economic complexity as network complication: Multiregional input-output structural path analysis. The Annals of Regional Science, 32, 407-436. https://doi.org/10.1007/S001680050081.

Sun, X., An, H., & Liu, X. (2018). Network analysis of Chinese provincial economies. Physica A: Statistical Mechanics and its Applications, 492, 1168-1180. https://doi.org/10.1016/j.physa.2017.11.045

Tsekeris, T. (2017). Network analysis of inter-sectoral relationships and key sectors in the Greek economy. Journal of Economic Interaction and Coordination, 12, 413-435. https://doi.org/10.1007/s11403-015-0171-7

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. doi:10.21105/joss.01686.

Xing, L., Guan, J., & Wu, S. (2018). Measuring the impact of final demand on global production system based on Markov process. Physica A: Statistical Mechanics and its Applications, 502, 148-163. https://doi.org/10.1016/j.physa.2018.02.129

Xu, M., & Liang, S. (2019). Input–output networks offer new insights of economic structure. Physica A-statistical Mechanics and Its Applications, 527, 121178. https://doi.org/10.1016/J.PHYSA.2019.121178

Zhou, M., Wu, G., & Xu, H. (2016). Structure and formation of top networks in international trade, 2001-2010. Social Networks, 44, 9-21. https://doi.org/10.1016/j.socnet.2015.07.006

Reference by

Sistema OJS 3 - Metabiblioteca |